BASIC ELECTRICAL ENGINEERING

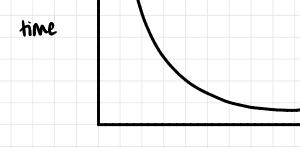
UNIT - 5 ELECTRICAL INSTALLATIONS

Vibha Masti

Feedback/corrections: vibha@pesu pes edu

FUSE

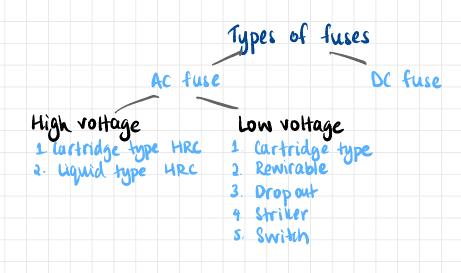
- · safety device
- Short piece of metal inserted in vircuit which melts when excess wrrent flows through it
- Insorted in series; breaks circuit when high current flows
- · Principle: heating effect of electric current


Desirable Properties of Fuse

- low MP (Sn, Pb)
 high conductivity (Cu, Ag)
 highly the reduction potential (Ag)
 low cost (Pb, Sn, Cu)

Important Properties

- · urrent rating
- · fusing wrient
- · fusing factor = fusing current (> 1) rated current


Fuse Characteristics

wrrent

DC Fuse and AC Fuse

- · De fuse bulkier than AC fuse
- Reason: formation of arc in DC fuce stronger as current/voltage docs not cross D
- · discharge through air
- · . · distance must be maintained
- · can be extinguished using gases
- · we do only ac fuses

LOW VOLTAGE

cartridge Fuse

- cylindrical shape
 vontact points at each end

Rewirable Fuse

· household; and kit-kat huse

Drop Out Fuse

- melting causes element to fall under gravity
 used for protection of outdoor transformers

Striker Fuse

- mechanical device used for tripping/indicator circuits
 enough force & displacement

Switch Fuse

- compact combination of switch and fuse
 low and medium voltages
 3 striker fuse switch fuse (3\$\$ supply)

HIGH VOLTAGE HRC

High rupturing capacity
Silica gel and liquid to extinguish arc cartridge liquid

Cartridge Type HV HRC Fuse

- Construction similar to low voltage
 Special design features incorporated

Liquid Type HV HRC Fuse

- Filled with CCl, to extinguish arc
 Wide range of applications
 Employed in transformer protection
 Circuits upto 1600 A, 132 kV

Advantages & disadvantages - ppt

0: A fuse wire of circular cross section has radius = 0.8 mm. The wire blows off at a current of 8A. calculate fusing current if the radius of the wire is 0.2mm

heat power = $I^2R = \frac{I^2lp}{\pi r^2}$ & hurface area

$$\frac{J^{2}lq}{\pi r^{2}} \propto 2\pi r l$$

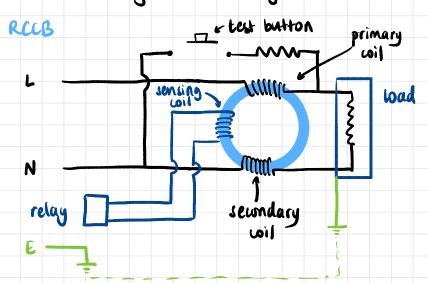
$$\frac{J^{2}}{\pi r^{2}} = 42\pi r l$$

$$\frac{J^{2}}{r^{3}} = 42\pi r l$$

$$\frac{J^{2}}{r^{3}} = 42\pi r l$$

$$\frac{J^{2}}{r^{3}} = 5 T_{2} = 14$$

MCB (upto 100A)


- · Minature circuit breaker
- Low Voltage; homes
 Instead of fuse
- · Automatically switches off circuit during overload) faulty conditions • Tripping -> knob goes to off position • Easily identifiable faulty areas • Usually more expensive

Working

- · Due to thermal effect of overcurrent and due to electromagnetic effect of overcurrent • Bimetallic strip — bends due to heating

ELCB

- Earth leakage vircuit breaker voltage ELCB ELCB
- -> current ELCB RCCB
- · detects leakage in earthing wire

- · As long as line wrrent = neutral wrrent, switch uosed
- · relay controls RCCB
- if there is leakage to earth from load, MMF mismatch and relay opens switch
 test button to test before adding load in industries

MCCB

- · Moulded case circuit breaker
- · High V , ~ 1000A
- · Works like MCB
- · Extra protection for outer casing Chard plastic, ceramic)

arc

Bimetallic strip

WIRES 4 LABLES

- Wire single electrical conductor
 Cable group of wires swathed in sheathing
 To conduct electricity

Wires

- · Domestic, small industries
- Wiring in appliances
 Solid and stranded

Caroles

- Small and big industries
 Distribution lines
- · Transmission lines

Types of Wires

1 Vulcanised Indian Rubber (VIR) wire

- · VIR used to insulate
- tinned lu/Al conductor Lto prevent sticking to VIR)
 Cotton tape Iow moisture conditions
 Bitumen outside

2 Cable Type sheath CCTS) Wire

- Normal rubber/plustic
 Thick covering rubber outside
 No moisture protection
 Tinned cu
 Used in landlines

- · 250/440 V

- 3 PVC Wire PVC insulating U/AR Widely used Water, heat, oil, UV
 - · 600,660, 1100V

4 Lead Alloy Sheathed Wires

- Damp places
 Continuous lead sheath covers (moisture)
 Fillers for shape
- · 0.12 cm

s. Weather Proof Wires

- · waterproof coat extra
- · same as PVC

6. Mineral Insulated Copper Covered Wire

- Mines, factories, refineries, furnace
 Fire protection hot areas
 Coating of MgD
 Cu sheath provided

Cables

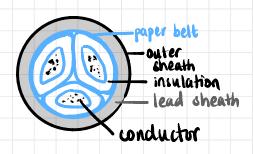
- Muttiple conductors held together with sheath
 Transmission of power

Construction

irun Steel

Lonductor -> insulation -> inner cheath -> armour -> outer sheath

used to Lore moisture protection earth (if leakage)


Types of Cables

- 1. Low tension cables: max 1 kV 2. High tension caloies: max 11 kV
- 3. Super tension cables: max 33 KV 4. Extra high tension cables: max 66 hV
- 5. Extra super voltage cables above 132 KV

Classification of Cables Based on Construction

1. Belted Cables

- upto II kV
 for 30
 cores insulated from each other using impregnated paper

2. Pressure Cables · beyond 66 kV

Oil Filled Cables